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H I G H L I G H T S

Dependent on impact velocity, some col-
lisions lead to a coefficient of restitution
𝜖 > 1.
𝜖 > 1 mostly appears when rotational
energy is transferred to motion normal
to impact.
𝑁-faceted particles with 𝑁 ≤ 15 can
induce more notorious rotations.
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A B S T R A C T

To understand the influence of rotations on the dissipation of energy in the interaction between a grain and its
environment, we investigate the relaxation process of a single particle bouncing on a flat horizontal surface.
For this purpose, faceted particles were used to promote the appearance of rotations in each bounce. The
evolution of potential, translational and rotational kinetic energies was analyzed during the whole relaxation
process, particularly focusing on the behavior just before and after each collision. The rebounding action of
an individual grain results in energy dissipation commonly quantified by 𝜖, the coefficient of restitution. This
coefficient is defined as the ratio of the normal velocity component prior to impact (𝑉𝑛) to the corresponding
component immediately following the collision (𝑉 ′

𝑛 ), i.e. related to translational kinetic energy associated with
motion in the normal direction. We identify a critical impact velocity below which, in certain collisions, 𝜖 > 1.
This phenomenon can be attributed to stored rotational kinetic energy which is transferred to translational
kinetic energy during the collision, thereby increasing the normal velocity 𝑉 ′

𝑛 and resulting in the observed
high values of 𝜖.
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1. Introduction and background

The objective of this study is to examine the role of rotations in the
dissipation of energy as a grain interacts with its surroundings while
relaxing to equilibrium. In particular, this investigation is significant to
understand how highly dissipative systems, such as those constituted by
grains, exchange energy and achieve equilibrium which is crucial to un-
derstand stability problems of granular systems, such as the triggering
and arrest of avalanches [1–4], sediment or particle transport down on
hillslopes [5,6], as well as many processes in bioingeenering, mining,
food and pharmaceutical industries [7–10].

The dissipation effects resulting from collisions are typically quan-
tified by 𝜖, the coefficient of restitution, which relies on various fac-
tors including material characteristics, surface roughness, body shape,
temperature, environment and impact velocity [11–19].

This coefficient 𝜖 is an important collision parameter used to de-
scribe and characterize particle impact features (impact forces, particles
deformation, time of deformation and others) that, are needed in
the mathematical modeling and simulation [15,20–23], e.g discrete
element method (DEM) and event driven methods, of processes and
phenomena involving the flow and stability of non consolidate materi-
als which allows to design equipment for manufacturing and handling
granular material in different industries, e.g. in biomass fragmentation,
in gravel cushions to avoid hazards in open-pit mines, seeders and for
transportation of pharmaceutical tablets among many others [7–9,18,
23].

For a particle colliding with a non moving surface, this coefficient is
determined as the ratio of the normal velocity component immediately
after collision (𝑉𝑜𝑢𝑡) to the one just before impact (𝑉𝑖𝑛) [11–13]. It is
expected that, due to dissipation in the collision, 𝜖 ≤ 1 and eventually,
for perfectly elastic collision 𝜖 = 1.

In many scenarios, the shape of grains or experimental setups do not
permit the detection and measurement of impact points and rotations.
Consequently, 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 are typically approximated using 𝑉𝑛 and 𝑉 ′

𝑛 ,
the normal component of the translational velocities of the particle’s
geometric center before and after impact, respectively. Therefore, the
coefficient of restitution is usually defined as follows:

𝜖 = −
𝑉 ′
𝑛

𝑉𝑛
(1)

Note that values of 𝜖, as defined by Eq. (1), do not considered
motions in other degrees of freedoms beside motion in the normal
direction. Therefore, in the following, we examine the behavior of a
particle as it returns to its resting state after successive bounces on a
flat surface to investigate how 𝜖 values are influenced by rotations and
tangential motions not considered by its definition.

In this work, we analyzed the behavior of 𝑁-faceted particles, where
𝑁 = 3, 4, 5, 6, 7, 8, 9, 10, 15 and ∞, i.e. a disk. For some values of 𝑁
the rotation effects disregarded by Eq. (1) lead to some collisions with
𝜖 > 1. This observation is analyzed in terms of energy stored in
other degrees of freedom and transferred to kinetic energy, leading to
an increase in normal velocity after impact, 𝑉 ′

𝑛 . To achieve this, the
energy transfer among the different degrees of freedom was studied
and therefore, we analyzed the evolution of kinetic, potential, and
rotational energy throughout the relaxation process and immediately
before and after each collision. Additionally, we find it pertinent to
examine another coefficient that encompasses total energy.

𝜖𝐸 = 𝐸′

𝐸
(2)

where 𝐸 and 𝐸′ are the particle total energy just before and after the
collision, respectively.

The total energy of the particle accounts for potential energy, kinetic
translational energy associated with horizontal and vertical motion,
and kinetic rotational energy. Although this coefficient offers greater
accuracy than 𝜖, it is challenging to measure it in 3𝐷 situations.
2

Fig. 1. Experimental setup schematic: The cell, made up of two glasses with a
plexiglass base, is backlit by a light panel. For clarity, the aluminum frame supporting
the cell and the tripod holding the camera are omitted.

In previous experiments, the coefficient of restitution (𝜖) for the
bouncing of steel spheres on a steel flat surface was indirectly derived
from the time between successive collisions and a significant dispersion
in 𝜖 was observed [11]. Montaine et al. suggest that this disper-
sion arises from the assumption in the experimental methodology that
the particle is point-like and that its energy comprises only potential
and translational energy, disregarding any rotational energy effects.
They argue that micro-roughness on sphere and platform surfaces
could induce torques due to misalignment between the line joining the
sphere-surface contact point and the sphere’s center relative to the axis
of gravity, leading to rotations that redistribute energy, not accounted
for in the mentioned coefficient. Also, both Montaine et al. [11] and
King et al. [12] observed that the dispersion for the coefficient of
restitution diminishes as the initial impact velocity increases.

2. Experimental set-up and procedure

As mentioned in Section 1, Montaine et al. [11] observed a large
dispersion in the coefficient of restitution obtained for a steel sphere
impacting a flat surface. They conjecture that this is due to the re-
ciprocal transfers between translational kinetic and rotational kinetic
energy not being taken into account in the experimental methodology
designed to obtain this coefficient. To study these energy transfers, a
quasi-two-dimensional experiment was designed, in which the particles
move between two proximate transparent vertical flat glasses. Thus,
movement is confined to a vertical plane enabling the dynamics to be
captured with a single camera (Fig. 1).

The experimental protocol involves releasing a particle into a ver-
tical cell that consists of two glass pieces fixed to an aluminum frame.
The cell has length 𝐿 = (21.5±0.1) cm and a width 𝑊 = (30.0±0.1) cm,
separated by a gap of 𝑊𝑔 = (4.2 ± 0.1) mm, slightly wider than the
particle’s width. The particle is positioned with its center aligned with
the upper edge of the cell, a distance 𝐻𝑜 = (21.5 ± 0.1) cm above the
base and is released without any rotational motion from this initial
height. Upon release, the particle collides with a flat plexiglass surface,
of height 𝐷 = (7.5 ± 0.1) cm and thickness 5 cm, and subsequently
rebounds until it comes to a rest. The flat plexiglass is glued to one
of the glasses. Thus, the total mass of the set is much greater than the
mass of the particles, so its inertia is considered infinite.
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Table 1
Radius 𝑅𝑁 of the circle needed to circumscribed each faceted particles in order to

ensure that they share the same area 𝐴 and mass 𝑚. Error for all values of 𝑅𝑁 is
0.1 mm.

N 3 4 5 6 7 8 9 10 15 ∞

𝑅𝑁 (mm) 23.3 18.8 17.2 16.5 16.1 15.8 15.6 15.5 15.2 15.1

Fig. 2. Image of 𝑁 faceted particles. Top row: 𝑁 = 3, 4, 5, 6, 7. Bottom row: 𝑁 =
8, 9, 10, 15 and ∞, i.e. a disk.

The system is backlit by a uniform light panel. A camera positioned
in front of the cell, centered on the area of interest, records the
images. Distortions at the edges of the visual field are minimal and
can be disregarded. In each case, the trajectory of each particle (some
examples can be found in [24]) is measured allowing to obtain:

• the velocity during the whole trajectory and, in particular, before
and after each impact,

• the potential, translational and rotational kinetic energies and,
consequently, the total energy. These energies will be obtained
during the whole trajectory and in particular before and after
each impact.

In order to promote the appearance of rotations after collisions the
relaxation process of faceted flat particles was analyzed. The flat 𝑁-
faceted particles with 𝑁 = 3, 4, 5, 6, 7, 8, 9, 10, 15 and ∞, i.e. a disk, were
3D printed (3D printer CreateBOT-MID) with polylactide (PLA) which
is a common thermoplastic frequently used to print rigid particles due
to its versatility and resistance [25] (Fig. 2). Particle with more than
15 edges were not used because accuracy is not guaranty due to the
3𝐷 printer’s resolution of the step angle of its stepper motor. Similar to
particles used in a previous study [1], these 𝑁-faceted particles also
have a centered circular orifice of radius 𝑟 = (0.75 ± 0.1) cm which
is used to easily track the faceted particle’s center of mass position,
i.e. the center of mass of the centered circular orifice. Each particle has
a thickness of 4 mm and, near the border, they have a small orifice (less
than 2 mm of diameter) that allows to trace rotations with respect to
their center of mass. The small hole dimensions ensures that for each
particle the position of its center of mass can be assumed to coincide
with its geometrical center, i.e. the center of mass of the centered
circular orifice. Each 𝑁-faceted particle can be exactly contained in a
circle of radius 𝑅𝑁 ( Table 1) whose values are determined to ensure
that all particles share the same area 𝐴 = (7.1±0.1) cm2, i.e. same mass
𝑚 = (2.7 ± 0.5) g.

Throughout the experiment, a Mako U-051B camera records the
process at a sampling rate of 391 frames per second, with a pixel
resolution of 800 𝑥 600, capturing an observation window measuring
26.4 cm 𝑥 19.8 cm. As a result, 1 pixel equates to 0.033 cm in physical
space. Due to constraints posed by the aluminum frame, the initial
launch point is not captured, with the first recorded vertical coordinate
of the particle’s center of mass approximated at 𝑌𝐶𝑀 ≃ 16 cm. ImageJ
software [26] is used to analyze images (see examples in Figs. 3 and 4),
determining the positions of the particle’s center of mass and the small
orifice near the border, which allows tracking rotations. In Figs. 3 and
4, we present snapshots images for a 𝑁 = 3 faceted particle and a disk
3

Fig. 3. Snapshots images for 𝑁 = 3 faceted particle. Collision takes place between
times 0.46 s and 0.47 s.

Fig. 4. Snapshots images for 𝑁 = ∞ faceted particle, i.e. disk. Collision takes place
between times 0.41 s and 0.42 s.

(𝑁 = ∞), respectively. For 𝑁 = 3, rotations and lateral displacements
are clearly observed after collision (Fig. 3). In contrast, for the disk
(Fig. 44), post-collision motion is perpendicular to the impact surface,
with negligible lateral motions and rotations.

As already mentioned, this image processing enables trajectory
measurements (some examples can be found in [24]) and the extraction
of translational and rotational velocities. A discernible shift in vertical
velocity sign occurs upon collision with the flat surface, allowing for the
determination of 𝑉𝑛 and 𝑉 ′

𝑛 from the local minima and maxima of the
vertical velocity evolution, as detailed in previous research [24]. Given
the sampling rate and the ability to detect a minimum displacement of 1
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pixel, velocities below 13 cm∕s cannot be accurately measured and are
thus filtered from the data. Typically, the particle rebounds between
3 and 10 times until its velocity drops below a critical threshold of
13 cm∕s. For each rebound, the coefficient of restitution, 𝜖, is computed
using 𝑉𝑛 and 𝑉 ′

𝑛 (as per Eq. (1)), derived from translational velocities
of the particle’s geometric center before and after impact, respectively.
Considering particle size and a threshold value of 200 used in image
analysis, positional coordinates are obtained with uncertainties of 0.1
pixels [27], resulting in velocity errors of 𝛥𝑉 = 2.6 cm∕s and relative
errors 𝛥𝜖∕𝜖 ∈ [0.03, 0.19]. For 𝜖 ≤ 1, the error 𝛥𝜖 ranges from 0.02
to 0.19, while for 𝜖 > 1, the error 𝛥𝜖 varies from 0.04 to 0.33. Addi-
tionally, potential, translational kinetic, and rotational kinetic energies
are calculated and analyzed during the relaxation process. It is noted
that in subsequent rebounds, beyond the initial one, the impacting face
of the particle cannot be controlled, yet it is assumed that significant
alterations to the results would not arise from controlling the launch
angle of the face.

This data allows to:

• Obtain the coefficient of restitution (Eq. (1)).
• Analyze the energy transfer between the different degrees of

freedom: rotational and translational (parallel and transverse to
gravity).

• Identify other possible coefficients to characterize the trans-
fer/loss of energy in an impact.

At each sampling time 𝑛 (i.e. each image), the rotational kinetic
energy 𝐸𝑅𝑛 =

𝐼𝜔2
𝑛

2 was obtained. The angular velocity 𝜔𝑛 was calculated
as 𝜔𝑛 = 𝜃𝑛+1−𝜃𝑛

𝛥𝑡 , where 𝛥𝑡 the inverse of the sampling rate (1∕391 s).
Each 𝜃 represents the angle between the horizontal direction (perpen-
dicular to gravity) and the segment defined by the position of the small
orifice near the edge of each particle and the particle’s center of mass.
Eq. (3) was derived to obtain the moment of inertia 𝐼 for each faceted
particle, considering the centered perforation of radius 𝑟, which allows
the detection of its center of mass.

𝐼𝐶𝑀 (𝑁) =
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where 𝑎 is the size of sides for a 𝑁 faceted particle.

𝑎(𝑁) = 𝑅𝑁

√
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Eqs. (3) and (4) condense in Eq. (5) which, for the disk, leads to
𝐼𝐶𝑀 = 𝑚(𝑅2

∞+𝑟2)∕2 for 𝑁 tending to ∞ (see Table 1 for values of 𝑅𝑁 ).
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Fig. 5 shows values of 𝐼𝐶𝑀∕𝐼𝐷𝐼𝑆𝐾
𝐶𝑀 as a function of 1∕𝑁 , i.e. for

the disk 1∕𝑁 = 0. The moment of inertia 𝐼𝐶𝑀 slightly decreases with
increasing 𝑁 . For 𝑁 > 4, the relative difference in 𝐼𝐶𝑀 compared to the
disk (𝐼𝐷𝐼𝑆𝐾

𝐶𝑀 = (3.81±0.41) g cm2) is less than 2%. The largest difference
in the value of 𝐼𝐶𝑀 compared to 𝐼𝐷𝐼𝑆𝐾

𝐶𝑀 was observed for 𝑁 = 3, with
a relative difference of less than 22%.

Also, to evaluate the potential influence of interactions between the
particle and the cell walls, we conducted tests by tilting the cell ±5◦

from the vertical to induce contact between the particle and the glass.
We found no significant differences compared to the case with the cell
in the vertical position.
4

Fig. 5. Moment of inertia 𝐼𝐶𝑀 with respect of the center of mass (CM) as function
of 1∕𝑁 , i.e. 1∕𝑁 = 0 corresponds to the moment of inertia of the disk including the
centered hole of radio 𝑟.

Table 2
Number of collisions analyzed and number of collisions with 𝜖 > 1 for each type of

faceted particle.
N # collisions # and % collision with 𝜖 > 1

3 1380 271 (19,6%)
4 304 52 (17,1%)
5 442 101 (22,8%)
6 383 88 (22,8%)
7 342 56 (16,4%)
8 344 52 (15,1%)
9 1497 175 (11,7%)
10 359 27 (7,5%)
15 349 1 (0,3%)
∞ 516 0 (0%)

3. Experimental results

In this section, we report experimental results for collisions of the
𝑁- faceted particles. The number of collisions varies from 304 to 1380,
details are given in Table 2.

3.1. Coefficient of restitution

Energy dissipation during each collision is quantified by 𝜖, the
coefficient of restitution (as per Eq. (1)), which does not considerate
any effects resulting from rotations. Fig. 6 illustrates the results for
𝜖 plotted against the normal impact velocity for both the disk and
triangular (𝑁 = 3) faceted particle.

Consistent with findings in previous studies [11–13], we observed
that the dispersion of 𝜖 around its mean value (as depicted in Fig. 7)
increases as the impact velocity decreases (refer to Fig. 8). Notably, the
dispersion is appreciably greater for the faceted particle, and for low 𝑉𝑛
values, the distribution of 𝜖 is asymmetric around each mean value. In
Section 3.2 we will propose an explanation in terms of energy transfer.

It is noteworthy that for the triangular faceted particle, 𝜖 can exceed
1 at low impact velocities (bottom panel in Fig. 6). In fact, for 𝑁 = 3,
approximately 20% of collisions exhibited 𝜖 > 1. This phenomenon was
also observed for all faceted particles except the disk (refer to Table 2)
and may be comprehended in terms of energy stored at impact, in
alternative degrees of freedom, which is subsequently transferred in
another collision to kinetic energy, resulting in an increase in 𝑉 ′

𝑛 , the
normal velocity after impact. The augmentation of energy in certain
degrees of freedom upon impact and its subsequent release during
another collision will be elucidated in the subsequent subsection.



Powder Technology 445 (2024) 120100F.E. Fernández et al.
Fig. 6. Coefficient of restitution as a function of 𝑉𝑛, the vertical impact velocity for
a particle colliding with a flat surface. Square markers indicate the mean values of
𝜖, sampled within 10 cm/s windows for 𝑉𝑛, plotted against the average value ⟨𝑉𝑛⟩

obtained within these windows. Top panel: 𝜖 values obtained for disk. Bottom panel:
𝜖 values obtained for 𝑁 = 3 faceted particle.

In Fig. 7, we present mean values of 𝜖, accompanied by uncertainty
bars estimated from their standard deviations, plotted against mean
values of ⟨𝑉𝑛⟩. Both ⟨𝜖⟩ and ⟨𝑉𝑛⟩ are computed for samples obtained
within windows of width 10 cm/s for ⟨𝑉𝑛⟩.

It is observed that ⟨𝜖⟩ decreases as ⟨𝑉𝑛⟩ increases and for 𝑉𝑛𝑜 =
(75 ± 5) cm/s, ⟨𝜖⟩ changes its behavior depending on the number of
faces 𝑁 .

On the one hand, for ⟨𝑉𝑛⟩ ≤ 𝑉𝑛𝑜 , as ⟨𝑉𝑛⟩ decreases, faceted particles
present less dissipation leading to collisions with ⟨𝜖⟩ values that are
not only larger than those obtained for the disk but might also reach
values larger than 1. As 𝑁 decreases, ⟨𝜖⟩ increases and, for triangular
particles, i.e. smallest 𝑁 , the highest ⟨𝜖⟩ values are registered.

On the other hand, for ⟨𝑉𝑛⟩ > 𝑉𝑛𝑜 , the contrary is observed, the
disk dissipated less energy in collisions leading to values of ⟨𝜖⟩ that
are larger than those obtained for the other studied faceted particles
(𝑁 ≤ 15). Fig. 8 shows that 𝜎, the dispersion in 𝜖 values, decreases as
the impact velocity 𝑉𝑛 increases and reaches, at 𝑉𝑛𝑜 , a constant value
that depends on the number 𝑁 of faces of the particle. Also, it can be
observed that for a given value of 𝑉𝑛, the dispersion 𝜎 increases with
𝑁 .

In Table 3 we present mean values ⟨𝜖⟩ calculated with the average
of mean values obtained in the following three conditions of impact
5

Fig. 7. Mean values ⟨𝜖⟩ obtained in windows of width 10 cm/s of 𝑉𝑛. Empty triangles
corresponds to 𝑁 = 3 faceted particle, yellow squares corresponds to 𝑁 = 9 faceted
particle, and gray circles corresponds to disks. Magnitudes are plotted vs. mean values
⟨𝑉𝑛⟩ obtained in the mentioned windows. Errors bars correspond to standard deviations
𝜎 obtained in windows of width 10 cm/s.

Fig. 8. Standard deviation 𝜎 obtained, for 𝜖 values, in windows of width 10 cm/s of
⟨𝑉𝑛⟩. Empty triangles corresponds to 𝑁 = 3 faceted particle, yellow squares corresponds
to 𝑁 = 9 faceted particle, and gray circles corresponds to disks. 𝜎 is plotted vs. mean
values ⟨𝑉𝑛⟩ obtained in the mentioned windows. Dashed line indicated the position of
𝑉𝑛𝑜 .

Table 3
Mean value of the coefficient of restitution ⟨𝜖⟩ calculated with the average of mean

values obtained for the whole range of 𝑉𝑛 and for 𝑉𝑛 > 𝑉𝑛𝑜 , i.e. high velocities and
𝑉𝑛 ≤ 𝑉𝑛𝑜 , i.e. low velocities, being 𝑉𝑛𝑜 = 75 cm/s.

𝑉𝑛(cm/s) N=3 N=9 𝑁 = ∞ (Disk)

0 − 200 0.86 ± 0.39 0.85 ± 0.14 0.87 ± 0.05
0 − 75 1.19 ± 0.79 0.92 ± 0.31 0.84 ± 0.09
75 − 200 0.72 ± 0.19 0.82 ± 0.13 0.88 ± 0.04

velocities: 𝑉𝑛 > 𝑉𝑛𝑜 , i.e. high velocities; 𝑉𝑛 ≤ 𝑉𝑛𝑜 , i.e. low velocities; and
for the whole range of impact velocities 𝑉𝑛. For 𝑁 ≤ 15, the 𝑁-faceted
particles can reach, at low velocities, mean values ⟨𝜖⟩ > 1.

We also examined the behavior of the coefficient of restitution 𝜖𝐸
(as per Eq. (2)), which accounts for the overall energy loss during
a collision. Unlike 𝜖, this coefficient considers not only variations
in translational kinetic energy associated with the particle’s vertical
motion but also accounts for changes in translational kinetic energy
related to lateral displacements and alterations in rotational kinetic
energy. As expected, 𝜖𝐸 consistently remains below 1. However, akin
to observations for 𝜖, it exhibits a wider dispersion at lower impact
velocities, as illustrated in Fig. 9. Additionally, akin to ⟨𝜖⟩ trends,
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Fig. 9. Coefficient of restitution 𝜖𝐸 as a function of 𝑉𝑛, the vertical impact velocity
for a 𝑁 = 3 faceted particle colliding with a flat surface. Square markers are mean
values of 𝜖 sampled in windows of width 10 cm/s for 𝑉𝑛, plotted vs. ⟨𝑉𝑛⟩ obtained in
the mentioned windows.

Fig. 10. Mean values ⟨𝜖𝐸 ⟩ obtained in windows of width 10 cm/s of 𝑉𝑛. Empty triangles
corresponds to 𝑁 = 3 faceted particle, yellow squares corresponds to 𝑁 = 9 faceted
particle, and gray circles corresponds to disks. Magnitudes are plotted vs. mean values
⟨𝑉𝑛⟩ obtained in the mentioned windows. Errors bars correspond to standard deviations
𝜎 obtained in windows of width 10 cm/s.

Table 4
Mean value of the coefficient of restitution ⟨𝜖𝐸 ⟩ computed with the average of all

values obtained for the whole range of 𝑉𝑛 and for 𝑉𝑛 > 𝑉𝑛𝑜 , i.e. high velocities and
𝑉𝑛 ≤ 𝑉𝑛𝑜 , i.e. low velocities, being 𝑉𝑛𝑜 = 75 cm/s.

𝑉𝑛(cm/s) N=3 N=9 𝑁 = ∞ (Disk)

0 − 200 0.76 ± 0.05 0.76 ± 0.05 0.72 ± 0.07
0 − 75 0.74 ± 0.08 0.74 ± 0.08 0.65 ± 0.11
75 − 200 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.06

⟨𝜖𝐸⟩ decreases with increasing 𝑉𝑛, and for 𝑉𝑛𝑜 = (75 ± 5) cm/s, its
behavior varies depending on the number of faces 𝑁 . Consequently, for
⟨𝑉𝑛⟩ ≤ 𝑉𝑛𝑜 , as ⟨𝑉𝑛⟩ diminishes, particles with fewer facets demonstrate
lesser dissipation compared to those with more facets, such as the
disk. Conversely, for ⟨𝑉𝑛⟩ > 𝑉𝑛𝑜 , the disk dissipates less energy in the
collision, resulting in ⟨𝜖𝐸⟩ values surpassing those obtained for faceted
particles with 𝑁 ≤ 15.

Fig. 10 displays the mean values ⟨𝜖𝐸⟩ and their corresponding
standard deviations 𝜎, computed within 10 cm/s windows for ⟨𝑉𝑛⟩.
Notably, it is evident that the dispersion of ⟨𝜖𝐸⟩ is more pronounced
at lower velocities compared to higher velocities, yet for all particles,
𝜖 remains below 1.
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Fig. 11. Mean values of ⟨𝜖⟩ (gray square) and ⟨𝜖𝐸 ⟩ (empty circle) and its dispersion
𝜎 obtained for low impact velocities values, i.e. 𝑉𝑛 ≤ 𝑉𝑛𝑜 , for 𝑁 = 3, 4, 5, 6, 7, 8, 9, 10, 15
and ∞ (disk). Top panel: Mean values of ⟨𝜖⟩ and ⟨𝜖𝐸 ⟩, error bars are standard deviation
𝜎 (red for 𝜖 and black for 𝜖𝐸 ). Bottom panel: 𝜎 for ⟨𝜖⟩ (gray square) and ⟨𝜖𝐸 ⟩ (empty
square).

Also, mean values of ⟨𝜖⟩ and ⟨𝜖𝐸⟩ were calculated with the average
of mean values obtained for high velocities (𝑉𝑛 > 𝑉𝑛𝑜 ) and low velocities
(𝑉𝑛 ≤ 𝑉𝑛𝑜 ).

In Table 4 we present mean values of ⟨𝜖𝐸⟩ calculated with the
average of mean values obtained when the impact velocity 𝑉𝑛 > 𝑉𝑛𝑜 ,
i.e. high velocities, 𝑉𝑛 ≤ 𝑉𝑛𝑜 , i.e. low velocities, and for the whole range
of impact velocities 𝑉𝑛.

For all the particles, 𝜖𝐸 remains below 1, resulting in mean values
of ⟨𝜖𝐸⟩ < 1, and its dispersion is comparatively smaller than that
of the coefficient of restitution 𝜖. Fig. 11 illustrates mean values and
standard deviations 𝜎 of ⟨𝜖𝐸⟩ and ⟨𝜖⟩ obtained for low impact velocities
(𝑉𝑛 ≤ 𝑉𝑛𝑜 ), while Fig. 12 depicts the same for high impact velocities
(𝑉𝑛 > 𝑉𝑛𝑜 ).

At low impact velocities, the mean value of ⟨𝜖𝐸⟩ and 𝜎 remains
relatively constant for all 𝑁-faceted particles, whereas the mean values
of ⟨𝜖⟩ and its dispersion 𝜎 increase as 𝑁 decreases.

Notably, similar results are observed for all magnitudes when 𝑁 =
15 and for the disk. At high impact velocities, the mean value of ⟨𝜖𝐸⟩ is
slightly lower than ⟨𝜖⟩ for 𝑁 ≥ 10, while for 𝑁 ≤ 9, they align within
error bars. Also, in this case, for all 𝑁-faceted particle 𝜎 remains nearly
constant for mean values of ⟨𝜖𝐸⟩, whereas mean values of ⟨𝜖⟩ increase
as 𝑁 decreases, albeit still smaller than those for low velocities. It is
noteworthy that under these conditions, 𝜎 values are alike for 𝑁 = 15
and the disk.
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Fig. 12. Mean values of ⟨𝜖⟩ (gray square) and ⟨𝜖𝐸 ⟩ (empty circle) and its dispersion
𝜎 obtained for high impact velocities values, i.e. 𝑉𝑛 > 𝑉𝑛𝑜 , for 𝑁 = 3, 4, 5, 6, 7, 8, 9, 10, 15
and ∞ (disk). Top panel: Mean values of ⟨𝜖⟩ and ⟨𝜖𝐸 ⟩, error bars are standard deviation
𝜎 (red for 𝜖 and black for 𝜖𝐸 ). Bottom panel: 𝜎 for ⟨𝜖⟩ (gray square) and ⟨𝜖𝐸 ⟩ (empty
circle).

3.2. Energy transfer throughout the relaxation process

Initially, a particle is released from a height 𝐻𝑜 with zero velocity
and no spin. During its descent, the particle (whether a disk or a faceted
particle) moves exclusively in the vertical direction and remains non-
rotational. Upon colliding with the flat surface, the disk and the faceted
particle exhibit distinct behaviors:

• Disk: considering that the disk has an uniform mass distribution
and that the center of mass and the point of impact are aligned
with the direction of gravity (vertical) no torques appear in the
collision. Therefore, there is negligible rotational kinetic energy
(𝐸𝑅) throughout the relaxation process and translational kinetic
energy only accounts for motion in the vertical direction (𝐸𝐾 (𝑉𝑦)).
An illustrative example is depicted in Fig. 13.

• Faceted particles: when a vertex of a faceted particle collides with
the flat surface and the point of impact does not align with the
center of mass in the vertical direction, it may induce torque, re-
sulting in rotations and/or lateral displacement. Evidence of this
phenomenon is presented in prior research [24]. Consequently,
rotational kinetic energy (𝐸𝑅) may increase due to impact and
then, between successive collisions, 𝐸𝑅 remains constant. For
faceted particles, translational kinetic energy (𝐸𝐾 ) accounts for
motion in both, horizontal and vertical, directions (𝐸𝐾 (𝑉𝑥, 𝑉𝑦)).
In subsequent collisions, 𝐸𝐾 (𝑉𝑥) (for transverse motion) and 𝐸𝑅
previously gained may be either dissipated upon impact or par-
tially transferred to 𝐸𝐾 (𝑉𝑦) linked to vertical motion, leading to
an increase in 𝑉 ′. Inset panel of Fig. 14 provides an illustrative
7
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Fig. 13. Example of energy evolution during the relaxation process of a disk (𝑁 = ∞):
translational kinetic energy (blue dashed line), rotational kinetic energy (red solid line)
and potential energy (black line).

Fig. 14. Example of energy evolution during the relaxation process of a faceted particle
(𝑁 = 9): translational kinetic energy (blue dashed line), rotational kinetic energy (red
solid line) and potential energy (black line). Main panel: detail of inset panel for
𝑡 = 9.9 s to 𝑡 = 10.1 s, it can be observed that a first collision induces a rotation,
translational kinetic energy is transfer to the rotational kinetic energy where it is stored
until it is released in the next collision. Inset panel: extended example of the relaxation
process for a faceted particle.

example of the relaxation process for a faceted particle while
the main panel highlights a detail where an initial collision in-
duces rotation, with translational kinetic energy transferred to
rotational kinetic energy and stored until it is released in the
subsequent collision.

It is important to note that during collisions, energy variations
may occur solely for 𝐸𝐾 (𝑉𝑦), 𝐸𝐾 (𝑉𝑥) and 𝐸𝑅. However, in experimen-
tal settings, due to the sampling rate in images acquisition, particles
achieve different height values before and after a collision, resulting in
spurious variations in potential energy i.e. 𝛥𝐸𝑃 ≠ 0, which lack physical
significance. Hence, variations in 𝐸𝑃 will not be analyzed.

Values of 𝜖 were determined solely using 𝑉 ′
𝑦 and 𝑉𝑦, i.e. 𝑉 ′

𝑛 and
𝑉𝑛 in Eq. (1), hence collisions with 𝜖 > 1, i.e. 𝑉 ′

𝑛 > 𝑉𝑛, indicate
an increase in translational kinetic energy associated with the vertical
motion (𝛥𝐸𝐾 (𝑉𝑦) > 0). These increments should be related either to
energy loss or to energy transfer from 𝐸𝑅 and/or exchanges 𝐸𝐾 (𝑉𝑥) to
𝐸𝐾 (𝑉𝑦), i.e., 𝛥𝐸𝑅 < 0 and/or 𝛥𝐸𝐾 (𝑉𝑥) < 0. Therefore, to comprehend
the energy transfers resulting in collisions with 𝜖 > 1 (refer to 2), the
following negative energy transfer rates were obtained and analyzed:
𝛥𝐸𝐾 (𝑉𝑦) and 𝛥𝐸𝐾 (𝑉𝑦) . An illustrative example of collisions with 𝜖 > 1
𝛥𝐸𝑅 𝛥𝐸𝐾 (𝑉𝑥)
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and negative energy transfer rates is depicted in Fig. 15 for 𝑁 = 9. We
observed the following:

• |

|

|

𝛥𝐸𝐾 (𝑉𝑦)
𝛥𝐸𝑅

|

|

|

≤ 1 for most collisions (98%), i.e. 𝛥𝐸𝐾 (𝑉𝑦) ≤ |𝛥𝐸𝑅|,
which indicates that an increase in 𝐸𝐾 (𝑉𝑦), i.e. 𝜖 > 1, could be
explained with energy being transfer only from 𝐸𝑅.

• |

|

|

𝛥𝐸𝐾 (𝑉𝑦)
𝛥𝐸𝐾 (𝑉𝑥)

|

|

|

≤ 1 for few collisions (7, 5%, see Inset in the bottom of
Fig. 15), i.e. 𝛥𝐸𝐾 (𝑉𝑦) ≤ |𝛥𝐸𝐾 (𝑉𝑥)|, and therefore the increase
in 𝐸𝐾 (𝑉𝑦) could be explained with energy being transfer only
from 𝐸𝐾 (𝑉𝑥). In the other collisions (92, 5%) an increase in 𝐸𝐾 (𝑉𝑦)
needs to account for energy being transfer from other degrees of
freedom besides from 𝐸𝐾 (𝑉𝑥).

Considering only collisions with 𝜖 > 1, Fig. 16 illustrates the
percentage of collisions with negative energy transfer rates (where 𝐸𝑅
and 𝐸𝐾 (𝑉𝑥) decrease and 𝐸𝐾 (𝑉𝑦) increase) that exhibit | 𝛥𝐸𝐾 (𝑉𝑦)

𝛥𝐸𝑅
| ≤ 1 and

|

𝛥𝐸𝐾 (𝑉𝑦)
𝛥𝐸𝐾 (𝑉𝑥)

| ≤ 1. Only faceted particles with 𝑁 ≤ 10 present a sufficient
number of collisions with 𝜖 > 1 (refer to Table 2) to analyze these
percentages. In fact, for disks, none of the collisions resulted in 𝜖 > 1.

For faceted particles with 𝑁 ≤ 10, akin to the observation for 𝑁 = 9
(Fig. 15), most collisions with 𝜖 > 1 exhibit 𝛥𝐸𝐾 (𝑉𝑦) ≤ |𝛥𝐸𝑅|, indicating
that an increase in 𝐸𝐾 (𝑉𝑦), i.e. 𝜖 > 1, can be attributed solely to energy
transfer from 𝐸𝑅, with only a small percentage of collisions requiring
energy transfer from lateral motion. Also, only a minor percentage of
collisions can explain a notable increase in 𝐸𝐾 (𝑉𝑦) only due to the
transfer of 𝐸𝐾 (𝑉𝑥). Therefore, most collisions require the transfer of
𝐸𝑅 to 𝐸𝐾 (𝑉𝑦), highlighting the importance of rotation in storing and
releasing energy in subsequent collisions.

4. Conclusion

This experimental work analyses the role of rotation during colli-
sions. Flat faceted particles were released in a Hele–Shaw cell to al-
low a quasi-two-dimensional translational motion and limited rotation
around a single axis. Particles are faceted to promote the appearance
of torques when particles collide over a flat surface leading to kinetic
rotational energy being storage or transfer during the collision process.

The coefficient of restitution 𝜖 serves as a parameter to characterize
the dissipation occurring in these collisions, determining the behavior
of granular systems, albeit measured within constraints specified by
Eq. (1).

Consistent with previous findings [11–13], 𝜖 is observed to depend
on the impact velocity 𝑉𝑛, displaying a wider dispersion for lower
impact velocities (𝑉𝑛 < 75 cm/s). The threshold value 𝑉𝑛𝑜 = 75 cm/s,
distinguishing low and high impact velocity regimes, may be associ-
ated with a deformation threshold related to the particle material. At
higher impact velocities, particles undergo greater deformation at the
contact point, resulting in lower values of 𝑉 ′

𝑛 due to increased energy
dissipation and inhibited rotations. These characteristics lead to smaller
values of 𝜖 and its dispersion 𝜎. Further investigation using particles
of different materials, e.g. different Young modulus, is necessary to
validate this hypothesis.

Additionally, we analyzed energy transfer during collisions, pro-
viding experimental evidence that rotations induced upon impact can
store rotational kinetic energy until a subsequent collision, where a
significant portion of this stored energy can be transferred to vertical
motion, explaining 𝜖 values above 1. Furthermore, we demonstrate that
for collisions with 𝜖 > 1, the translational kinetic energy associated
with normal motion is more likely to be gained from rotational kinetic
energy stored in a previous collision than from the translational kinetic
energy associated with the lateral motion of the particle, which also
accompanies rotations.

We observed that for 𝑁 ≥ 15, the occurrence of collisions with 𝜖 > 1
decreases, with the probability of such events becoming insignificant
(see Table 2). Therefore, for 𝑁 ≥ 15 the 𝑁-faceted particles behave like
disks, meaning torques are negligible when particles collide with the
8

Fig. 15. Distributions of the modulus of energy transfer rates for collisions with 𝜖 > 1
and negative energy transfer rates for the 𝑁 = 9 faceted particle. Top panel- |

|

|

𝛥𝐸𝐾 (𝑉𝑦 )
𝛥𝐸𝑅

|

|

|

(𝐵𝑖𝑛 = 0.1). Main bottom panel- |

|

|

𝛥𝐸𝐾 (𝑉𝑦 )
𝛥𝐸𝐾 (𝑉𝑥 )

|

|

|

(𝐵𝑖𝑛 = 10). Inset in bottom panel- |

|

|

𝛥𝐸𝐾 (𝑉𝑦 )
𝛥𝐸𝐾 (𝑉𝑥 )

|

|

|

,
detail with 𝑏𝑖𝑛 = 1. Red lines are to guide the eye.

Fig. 16. Considering only collision with 𝜖 > 1, figure presents the percentage of
collisions with negative energy transfer rates and |

𝛥𝐸𝐾 (𝑉𝑦 )
𝛥𝐸𝑅

| ≤ 1 (gray bars), and

|

𝛥𝐸𝐾 (𝑉𝑦 )
𝛥𝐸𝐾 (𝑉𝑥 )

| ≤ 1 (white bars).

flat surface. We inferred that this occurs because the vertices are very
close to each other, and during a collision, two consecutive vertices
make contact with the flat surface, resulting in a vertical impact that
does not induce torque, thereby preventing rotations.

Furthermore, the storage and transfer of kinetic energy related
to rotations and lateral displacements can account for the significant
dispersion of 𝜖, particularly important at lower impact velocities and
for smaller 𝑁 values.
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Therefore, we conclude that these features should be taken into
consideration when assessing whether dissipation at impact should be
characterized solely by 𝜖, as defined in Eq. (1), or whenever possible,
such as in two-dimensional systems, through measurements of 𝜖𝐸 .
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